

ELE 201: Electrical Circuits I Exam 3 – Spring 2014

Duration: 1 hour 20 minutes

Start Time: 9:30 am

Date: 15/05/2014 Dr. Dani TANNIR

Name:	e:	SOLUTION	ID#:	

INSTRUCTIONS:

- Answer each of the following questions in the space provided.
- This is a closed-book exam.
- If something is not clear, state your assumptions.
- Programmable calculators are not allowed.
- The number of marks for each question is specified next to it.
- The total number of marks is 100.

11	2	3	4	Total
/25	/25	/25	/25	

Question 1 (25 marks)

The waveform for the current source supplying the following inductor circuit is as shown below

- G a. Determine the equivalent inductance L_{eq} as seen at the terminals of the current source.
- \mathfrak{D} b. Determine the expression for the voltage v(t) across the terminals of the equivalent circuit.
- c. Sketch the voltage waveform versus time (label key points).
 - d. Determine the energy stored in the equivalent inductive circuit at t = 1.5ms and at t = 4.5ms.

a)
$$Leq = [(6|16)+3]|13]+0.2+0.3]|10.75$$

$$= 2.5||0.75 = 0.584|$$

$$V(t)=\overset{Ldi}{d}=(0.58)(30)$$
 0(0.58)(-20) 1(0.58)(15) 4

d)
$$E = \frac{1}{2} Li(t)^{2}$$

 $i(1.5m) = 20m$
 $i(4.5m) = -27.5m$

$$E(1.5m) = 0.116mJ$$

 $E(4.5m) = 0.147mJ$

Question 2 (25 marks)

Consider the following circuit:

(6)

Calculate $v_0(t)$ in the circuit shown if $i_1(t) = 200\cos(10^5 t + 60)$ mA, $i_2(t) = 100\sin(10^5 t + 90)$ mA and $v_s(t) = -10\sin(10^5 t - 30)$ V.

By how many degrees does $v_0(t) \log v_s(t)$?

Sketch the phasor diagram showing V_s , V_o and V_c (label key magnitudes and angles).

a)
$$I_{1}(t) = 200\cos(10^{5}t + 60)_{m}$$
 $I_{1} = 0.2260$
 $I_{2}(t) = 100\cos(10^{5}t)_{m}$ $\Rightarrow I_{2} = 0.120$
 $V_{5}(t) = 40\cos(10^{5}t)_{m}$ $\Rightarrow V_{5} = 10260$
 $V_{5}(t) = 40\cos(10^{5}t)_{m}$ $\Rightarrow V_{5} = 10260$
 $V_{6} = 0.173290 + 0.060 = 0$
 $V_{6} = 0.173290 + 10260$
 $V_{7} = 0.0173290 + 10260$
 $V_{7} = 0.0173290 + 0.01739$
 $V_{7} = 0.0173290$
 V_{7}

$$V_c = V_S - V_o = 3.37 \angle -68.97$$

Question 3 (25 marks)

Determine $v_1(t)$ in the following circuit.

Different Frequencies => Must use superposition!

$$V_{1}' = -\left(\frac{-jS}{3+j2-jS}\right)^{12C^{30}}$$

$$= -3.66 + j13.66$$

$$= 14.14 \angle 10S V$$

$$V_{i}'' = \left(\frac{3+j4}{3+j4-j2.5} \quad 22-60\right)-j2.5$$

$$= \left(2.488-j1.64\right)\left(-j2.5\right)$$

$$= -4.1068-j6.22$$

$$= 7.454-123.4$$

ECOURLIA CO

V, (t) = 14.14 cos(10t+105) + 7.45cos(00+-123.4) V

Question 4 (25 marks)

Find the phasor current I_o in the following circuit.

Node equation at V.

$$\frac{V_1 - V_2}{1} + \frac{V_1 - 460}{1} - 4I_x = 0$$

$$\begin{vmatrix} V_1 - V_2 + V_1 - 4L0 - 8V_1 + 4V_2 = 0 \\ -6V_1 + 3V_2 = 4L0 \end{vmatrix} V_2 = \frac{4 + 6V_1}{3}$$

$$\frac{V_2 - V_1}{1} + \frac{V_2 - 460}{-j1} + \frac{2V_1 - V_2}{J_x} = 0$$

$$V_2 - V_1 + jV_2 - jt + 2V_1 - V_2 = 0$$

$$V_1 + jV_2 = j4$$

$$V_1 + (4+6V_1)(j) = j'4$$

$$V_1 + j\frac{4}{3} + j2V_1 = j4$$
 Page 8 of 10

$$T_0 = \frac{4 - 2V_X}{1}$$

$$F_{1,33}L - D_{6,8}$$

$$-0.8 + j_{1,067}$$

 $\frac{T_{x} = V_{2} - 2V_{x} = V_{2} - 2V_{2} + 2V_{1}}{V_{x} = V_{2} - V_{1}} = 2V_{1} - V_{2}$

$$V_{1} = \frac{1.067 + 0.533}{1.2666}$$
 $V_{2} = \frac{3.467 + 0.533}{1.2666}$ $V_{3} = \frac{3.467 + 0.533}{1.067}$